Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association.
نویسندگان
چکیده
The light-organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution.
منابع مشابه
Vibrio fischeri LuxS and AinS: comparative study of two signal synthases.
Vibrio fischeri possesses two acyl-homoserine lactone quorum-sensing systems, ain and lux, both of which are involved in the regulation of luminescence gene expression and are required for persistent colonization of the squid host, Euprymna scolopes. We have previously demonstrated that the ain system induces luminescence at cell densities that precede lux system activation. Our data suggested ...
متن کاملPhysical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ.
Vibrio fischeri ES114 is an isolate representing the specific bacterial light organ symbiont of the squid Euprymna scolopes. An interesting feature of this strain of V. fischeri is that it is visibly luminous within the light organ of the squid host but is nonluminous when grown under standard laboratory conditions. Luminescence can be restored in laboratory culture, however, by the addition of...
متن کاملBacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis
The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that enco...
متن کاملGacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host.
The GacS/GacA two-component system regulates the expression of bacterial traits during host association. Although the importance of GacS/GacA as a regulator of virulence is well established, its role in benign associations is not clear, as mutations in either the gacS or gacA gene have little impact on the success of colonization in nonpathogenic associations studied thus far. Using as a model ...
متن کاملLitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization.
Vibrio fischeri is the bacterial symbiont within the light-emitting organ of the sepiolid squid Euprymna scolopes. Upon colonizing juvenile squids, bacterial symbionts grow on host-supplied nutrients, while providing a bioluminescence that the host uses during its nocturnal activities. Mutant bacterial strains that are unable to emit light have been shown to be defective in normal colonization....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 32 شماره
صفحات -
تاریخ انتشار 2008